데이터전처리 (1) 썸네일형 리스트형 [머신러닝] 데이터 전 처리하기 데이터 분석 및 전처리 단계 : 수집한 데이터를 분석하고 머신러닝에 사용할 형태로 변환시키는 단계 크롤링이나 DB 데이터를 통해 수집된 데이터를 머신러닝에 학습시키기 위해서는 데이터 전 처리 과정이 필요하다. 데이터 전 처리는 크게 3가지 역할을 한다. 머신러닝의 입력 형태로 데이터 변환 (피처 엔지니어링) 결측값 및 이상치를 처리하여 데이터 정제 학습용 및 평가용 데이터 분리 1. 데이터 변환 실제 학습에 사용되는 데이터 셋은 이미지, 자연어, 범주형, 시계열 등 다양한 데이터 형태를 가지고 있다. 대부분의 머신러닝 모델은 숫자 데이터를 입력으로 받으며, 대부분의 원본 데이터는 머신러닝 모델이 학습할 수 없는 형태로 되어있다. 따라서 학습에 사용할 데이터는 머신러닝 모델이 학습할 수 있는 수치형 자료로.. 이전 1 다음